
FEMS Microbiology Ecology, 2022, 98, 1–18

DOI: 10.1093/femsec/fiac081
Advance access publication date: 9 July 2022

Minireview

Effect of temperature on microbial reductive
dehalogenation of chlorinated ethenes: a review

Mohammad Sufian Bin Hudari, Hans Richnow , Carsten Vogt , Ivonne Nijenhuis *

Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
∗Corresponding author. Department of Isotope Biogeochemistry, Helmholtz Center for Enviromental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Tel: +49 341 235 1356; E-mail: ivonne.nijenhuis@ufz.de
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Abstract

Temperature is a key factor affecting microbial activity and ecology. An increase in temperature generally increases rates of microbial
processes up to a certain threshold, above which rates decline rapidly. In the subsurface, temperature of groundwater is usually stable
and related to the annual average temperature at the surface. However, anthropogenic activities related to the use of the subsurface,
e.g. for thermal heat management, foremost heat storage, will affect the temperature of groundwater locally. This minireview intends
to summarize the current knowledge on reductive dehalogenation activities of the chlorinated ethenes, common urban groundwater
contaminants, at different temperatures. This includes an overview of activity and dehalogenation extent at different temperatures
in laboratory isolates and enrichment cultures, the effect of shifts in temperature in micro- and mesocosm studies as well as observed
biotransformation at different natural and induced temperatures at contaminated field sites. Furthermore, we address indirect ef-
fects on biotransformation, e.g. changes in fermentation, methanogenesis, and sulfate reduction as competing or synergetic microbial
processes. Finally, we address the current gaps in knowledge regarding bioremediation of chlorinated ethenes, microbial community
shifts, and bottlenecks for active combination with thermal energy storage, and necessities for bioaugmentation and/or natural re-
populations after exposure to high temperature.
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Introduction
Organohalides comprise a diverse group of chemicals, which are
used in various industries globally. However, its widespread in-
dustrial application also serves as an entry point into the envi-
ronment. In fact, organohalides such as chlorinated solvents are
amongst the main contaminant groups that are commonly occur-
ring in the urban groundwater environment; the majority of these
are derived from anthropogenic sources (Rittmann et al. 2000).
Some of them can be highly persistent and toxic and are, there-
fore, listed as priority groundwater contaminants in the European
Union and the USA (https://www.epa.gov/dwreginfo/chemical-c
ontaminant-rules) or in the Stockholm Convention on Persistent
Organic Pollutants (Kalnins et al. 2019).

Chlorinated ethenes (CE), such as tetrachloroethene (PCE),
trichloroethene (TCE), and the partially dechlorinated metabo-
lites dichloroethene isomers (DCE), and vinyl chloride (VC) are
of a major concern mainly due to their frequent occurrence in
the environment (Squillace 2004, Carter 2008, Weatherill et al.
2014). While PCE and TCE originate from anthropogenic sources,
cis-DCE and VC tend to be associated with biotic transformation
in situ (Hartmans 1985, Vogel and McCarty 1985, Nijenhuis et al.
2007). Although PCE and TCE are used in a variety of industrial
and commercial applications, such as industrial solvents or de-
greasing agents, improper usage or disposal resulting in acciden-
tal spillage or leakages are notably amongst the main sources of
these contaminants into the subsurface (Bishop 1993).

Groundwater contaminations including organohalides and ur-
ban areas usually overlap due to urban-related industrial activ-
ities (Rivett et al. 2012). Hence, mitigation strategies must be in-
corporated within the scope of the subsurface urban groundwater
management. PCE and TCE form dense nonaqueous phase liquids
and tend to sink, and migrate through the permeable aquifers be-
fore reaching a nonpermeable zone, resulting in plumes that are
usually long due to the low abiotic and biotic degradation rates
(OSWER Directive 1999, Fiedler and Gilbert 2013). Given the persis-
tence of PCE, TCE, as well as DCE, and VC in the environment and
their toxicity to human health, ensuring the complete conversion
of these CE to the relatively harmless ethene or mineralization to
CO2 is paramount (National Research Council 2000, Huang et al.
2014).

Natural attenuation (NA) is one common mitigation strategy
for organic groundwater contaminants (OSWER Directive 1999).
Both abiotic and biotic transformations of CE depend on a mul-
titude of factors such pH, temperature, and presence of elec-
tron donors/acceptors that can mediate or hamper dechlorination
(Zhuang and Pavlostathis 1995, Lai and Lo 2007, Shapiro 2017).
Although NA can proceed abiotically, such reactions tend to be
limited and usually occur alongside biotransformation by dechlo-
rinating bacteria (Wiedemeier et al. 1998, Dolinova et al. 2017).
For organohalides, which include PCE and TCE, organohalide res-
piration is the main mode of biotransformation in anoxic envi-
ronments (Adrian and Löffler 2016, Dolinova et al. 2017). CE are
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used as an electron acceptor with hydrogen as electron donor pro-
vided by fermentation of substrates such as lactate and pyruvate,
or direct oxidation of low-weight organic compounds (Schink and
Stams 2006, Fiedler and Gilbert 2013). Anaerobic transformation
of PCE and TCE generally progresses via sequential dechlorina-
tion to cis-DCE, one of the three isomers of DCE (trans-DCE and
1,1-dichloroethene are less common intermediates) and further
dechlorination to VC before yielding ethene (Fig. 1; OSWER Direc-
tive 1999). Overall, more bacterial species are known to be capable
of utilizing PCE and TCE as electron acceptors generating the end
product DCE when compared with those that are capable of trans-
forming DCE or VC (Fig. 1 and Table 1; Table S1, Supporting Infor-
mation; Dolinova et al. 2017). Probably as a consequence of the low
cell number and diversity of species possessing genes, which con-
fer the ability to dechlorinate DCE or VC, or unsuitable environ-
mental conditions for the biochemical reaction, these compounds
are typically accumulated at sites with PCE and TCE contamina-
tion (Fiedler and Gilbert 2013, Dolinova et al. 2017). Meanwhile
to date, only a few bacterial strains belonging to the genera De-
halococcoides (i.e. Dehalococcoides mccartyi) and ‘Candidatus Dehalo-
genimonas etheniformans’ are known to dechlorinate PCE or TCE
completely to ethene while others are only capable of partially
dechlorinating PCE or TCE to either DCE or VC (Tables S1, Sup-
porting Information).

Temperature is one of the crucial factors affecting microbial
activity and ecology in the environment (Dettmer 2002, Fiedler
and Gilbert 2013, Jesußek et al. 2013, Shapiro 2017), and tem-
perature changes may affect rates of other processes e.g. nitro-
gen and carbon cycling significantly (Hantschel et al. 1995, Yvon-
Durocher et al. 2010, Jung et al. 2011). Temperature can also in-
fluence rates of other processes such as fermentation or acetoge-
nesis, which can indirectly support dechlorination by supplying
electron donors (e.g. hydrogen) or carbon sources (e.g. acetate).
On the contrary, temperature can enhance growth of microorgan-
isms within the community, which compete with dechlorinating
bacteria for the same electron donors and carbon sources, exam-
ples being methanogens or sulfate reducers (Smatlak 1996, Cham-
bon et al. 2013, Wei et al. 2016). In general, there are limitations
to which increasing temperatures can affect rates of biochemi-
cal reactions. Rates of processes driven by microbes are highest
within a certain temperature range at the temperature optimum,
beyond which rates usually rapidly decline (Mohr and Krawiec
1980, Huang et al. 2011). Once a threshold temperature is ex-
ceeded, irreversible damage can occur to cell components such
as proteins and cell membranes resulting in the ceasing of ac-
tivity. Similarly, below a certain temperature, activities will de-
crease significantly and stop (Mohr and Krawiec 1980, Huang et al.
2011).

Microbial growth and activity temperatures are characteris-
tic for each microorganism, and microorganisms and microbial
communities are able to tolerate temperature changes to a cer-
tain extent (Madigan et al. 2018). Typically, the growth range for
psychrophiles, mesophiles, thermophiles, and hyperthermophiles
can be roughly defined as 0–20◦C, 8–48◦C, 40–70◦C, and 65–
90◦C, respectively (Madigan et al. 2018) and these microorgan-
isms are usually adapted to temperature ranges of their habi-
tat. However, some taxonomic groups within the Gram-positive
bacteria develop spores resistant to extreme hot or cold tem-
peratures, allowing them to survive long periods at unfavorable
temperature conditions. Owing to the fact that most enrich-
ment cultures and isolates have been obtained using material
from ‘mesophilic’ habitats, most described cultures are actually
mesophiles. While there have been attempts to establish dechlo-

rinating cultures from materials from hot and cold environments
these were mainly unsuccessful and are not in published liter-
ature (see section ‘Effect of temperature on microbial reductive
dehalogenation by microbial communities at laboratory and field
conditions’).

In general, the temperature of groundwater is stable and cor-
related to a given depth, becoming constantly higher in direction
of the earth center (Goldscheider et al. 2006, Griebler and Lueders
2009); groundwater temperatures may only fluctuate annually in
a relatively narrow range in shallow aquifers depending on fac-
tors such as annual seasonal average temperature changes at the
surface and aquifer recharge (Benz et al. 2017, Moeck et al. 2020).
It has also been observed to respond, albeit with some delay and
at a small degree, to climate change (Menberg 2014, Menberg et
al. 2014, Benz et al. 2017, Previati and Crosta 2021). Notably, other
anthropogenic activities, including inputs from local heat sources
(e.g. subways; Menberg et al. 2013), or the use of the subsurface,
e.g. for thermal energy storage (Fleuchaus et al. 2018), can af-
fect the temperature of groundwater locally in larger magnitudes.
Currently, two main types of underground thermal energy stor-
age systems (UTES) are implemented for heating and cooling of
buildings (Fleuchaus et al. 2018): borehole thermal energy storage
(BTES), where heat or cold is extracted from a volume of rock or
soil, and aquifer thermal energy storage (ATES), from which heat
or cold is extracted from groundwater whilst being pumped from
one well to another (Fleuchaus et al. 2018, 2020). For ATES, na-
tional regulations require a balance in temperature over a certain
period and limit the upper and lower temperatures of groundwa-
ter injected, e.g. between 5 and 25◦C, however, other systems such
as High Temperature ATES (HT-ATES), which introduce tempera-
tures above 50◦C do exist (Fleuchaus et al. 2018, 2020, Todorov et
al. 2020).

Currently, there is a demand for application of ATES in ur-
ban areas, e.g. in redeveloped former brown field sites, which
can be contaminated where this increased use of the subsur-
face for areas to fulfill high energy storage demands can overlap
with organohalides-contaminated groundwater. For CE bioreme-
diation, temperatures exceeding a certain maximum (∼ 45◦C) may
halt or disrupt biotransformation resulting in accumulation of the
toxic parent compounds PCE/TCE or its dechlorination reduction
intermediates, DCE or VC. On the other hand, higher temperatures
may trigger other effects such as increased rates of volatilization
or abiotic CE degradation by reaction with iron compounds such
as pyrite (FeS2) or zero-valent iron (Costanza and Pennell 2007, Lai
and Lo 2007, O’Carroll et al. 2013, Badin et al. 2016, Schaefer et al.
2017, Koproch et al. 2019). Since increasing temperatures in the
subsurface are mainly due to anthropogenic activities (Menberg
2014), there is a need to revisit the current status of temperature-
related research pertaining to the isolates, enrichment cultures,
and in situ field sites experiments to allow conclusions on the
effect of temperature on microbial dehalogenation and subse-
quent management of these temperature impacted contaminated
sites.

In this review, we aim to summarize the current knowledge of
the temperature range of microbial reductive CE dechlorination,
compiling data for dechlorinating bacterial isolates (Table 1; Table
S1, Supporting Information), microbial consortia, column studies,
as well as field sites (Table S2, Supporting Information). We de-
rived general upper and lower temperature limits for reductive
CE dechlorination from the published studies, for both the direct
dechlorination reaction as well as for processes indirectly affect-
ing dechlorination. Finally, we outline research gaps and questions
that need to be addressed for a better understanding on the effects
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Table 1. Overview of optimal temperatures and temperature ranges for growth or activity of isolates and selected enrichment cultures
capable of reductive dehalogenation of CE. For more information and details see Table S1 (Supporting Information). References for the
corresponding strains/isolates are available in the Supporting Information (N.A. not available).

Microorganisms/culture Strains
Temperature

range
Final dechlorination

products References

Chloroflexota: Dehalobium, Dehalogenimonas, and Dehalococcoides
‘Dehalobium
chlorocoercia’

DF-1 10–35◦C PCE → trans-DCE +
cis-DCE

Wu et al. (2000, b, 2002a), Miller et al. (2005),
Kittelmann and Friedrich (2008), May et al.
(2008), May and Sowers (2016)

Dehalogenimonas ‘Candidatus
Dehalogenimonas
etheniformans’ strain GP

20–30◦C TCE → ethene Yang et al. (2017b)

Dehalogenimonas sp. strain
WBC-2

RT trans-DCE → VC Jones et al. (2006), Manchester et al. (2012),
Molenda et al. (2016)

Dehalococcoides
mccartyi

195, BTF08, CBDB1, BAV1,
VS, FL2, GT, MB, ANAS1,
ANAS2, 11a, 11a5, DCMB5,
CG1, CG4, CG5, 11G, CG3,
SG1, GEO12, NIT01,
IBARAKI, GY50, UCH007

15–35◦C PCE / TCE → ethene; some
partial to cis-/trans-DCE or
VC

Maymo-Gatell et al. (1997), Adrian et al.
(2000), Richardson et al. (2002), Cupples et
al. (2003), He et al. (2003, 2005), Muller et al.
(2004), Sung et al. (2006a), Bunge et al.
(2008), Cheng and He (2009), Cheng et al.
(2010), Cichocka et al. (2010), Lee et al. (2011,
2013), Löffler et al. (2013), Wang et al. (2014b,
2019), Uchino et al. (2015), Yohda et al.
(2015), Adrian and Löffler (2016), Ding et al.
(2017, 2020), Ismaeil et al. (2017), Zhao and
He (2019), Yan et al. (2021), Asai et al. (2022)

Bacillota: Dehalobacter, Acetobacterium, and Desulfitobacterium
Dehalobacter Dehalobacter restrictus

PER-K23T, TEA
10–37◦C PCE/TCE → cis-DCE Holliger et al. (1993,1998), Wild et al. (1996),

Nelson et al. (2014)
Dehalobacter sp. strains
12DCB1, 13DCB1, TCP1

25–30◦C PCE → TCE; main product
of strain 12DCB1 + cis-DCE

Nelson et al. (2011, 2014), Wang et al. (2014a)

Acetobacterium WB1 30◦C PCE → TCE Balch et al. (1977), Egli et al. (1988),
Damborský (1999)

Desulfitobacterium Dsb. hafniense strains
DCB-2T, PCE-S, TCE-1,
TCP-A, Y51, G2, JH1
Dsb. dehalogenans strains
PCE-1, JW/IU-DC1
Dsb. metallireducens strain
853-15AT

Dsb. sp. strains B31e3,
KBC1, PR, Viet-1, PCP-1

13–45◦C PCE → DCE; some to TCE Madsen and Licht (1992), Utkin et al. (1994),
Bouchard et al. (1996), Christiansen and
Ahring (1996), Gerritse et al. (1996), Loffler et
al. (1997), Miller et al. (1997), Dennie et al.
(1998), Damborský (1999), Gerritse et al.
(1999), Tiedje (1999), Breitenstein et al.
(2001), Suyama et al. (2001), Finneran et al.
(2002), Shelobolina et al. (2003), Tront et al.
(2006), Tsukagoshi et al. (2006), Villemur et
al. (2006), Yoshida et al. 2007, Fletcher et al.
(2008), Ding et al. (2014), Goris et al. (2015)

Thermodesulfobacteriota: Desulfuromonas and Geobacter
Desulfuromonas Dsm. chloroethenica strain

TT4B
Dsm. michiganensis strains
BB1, BRS1

10–35◦C PCE/TCE to cis-DCE Krumholz et al. (1996), Krumholz (1997),
Sung et al. (2003)

Geobacter lovleyi SZT, KB-1, LYY 10–40◦C PCE → cis-DCE Duhamel and Edwards (2006), Sung et al.
(2006b), Wagner et al. (2012), Lihl et al.
(2019), Liang et al. (2021)

Campylobacterota: Sulfurospirillum
Sulfurospirillum
multivorans

Strain K 15–33◦C PCE/TCE→ cis-DCE Scholz-Muramatsu et al. (1995)

Sulfurospirillum
halorespirans

Strain PCE-M2 Opt: 25–30◦C PCE/TCE→ cis-DCE Luijten (2003)

Sulfurospirillum sp. Strains JPD-1, ACS TCE, ACS

DCE

JPD-1: 1.5–40◦C
ACS TCE: 21◦C
ACS DCE: 21◦C

PCE to TCE; strain ACS TCE

PCE to cis-DCE; strains
JPD-1 and ACS DCE

Laanbroek et al. (1977), Pietari (2002), Yang
et al. (2017a), Huo et al. (2020)

Actinomycetota: Propionibacterium
Propionibacterium strains HK-1 and HK-3 30◦C Dechlorination to ethene Stackebrandt et al. (2006), Chang et al. (2011)

Abbreviations: CE; chloroethenes; DCE; dichloroethene; N.A.; not available; PCE; perchloroethene; RT; room temperature; T; temperature; TCE; trichloroethene; and
VC; vinyl chloride.
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Figure 1. Overview of reductive dehalogenation of PCE; via TCE, DCE, and VC to ethene, with respective enzymes; PceA, PteA, TceA, VcrA, BvcA, and
CerA and some of the reported microorganisms capable of the partial reaction.

of temperature on microbial dehalogenation and a combined ap-
plication of ATES with bioremediation.

Temperature optima and growth ranges of
organohalide-respiring bacterial isolates
Organohalide-respiring bacteria (OHRB) have been isolated from
a variety of sources, many of which originated from chlorinated
hydrocarbon contaminated sites from various continents and
mainly coming from temperate climate zones (Table S1, Support-
ing Information). However, isolation was particularly targeted at
obtaining isolates with dehalogenating capability for the purpose
of further characterization; this process is usually related to avail-
ability of incubation temperatures in laboratories, e.g. room tem-
perature (∼20–25◦C) or with a focus on the in situ temperature at
the sampling sites. Hence, few studies investigating the effect of
temperature shifts on the dechlorination potential of the isolates
have been published. Notwithstanding that, not all the studies
contain information on temperature range for growth, optimal
temperature, or temperature at which dehalogenation was ob-
served. While a number of the genera and strains have been sub-
stantially characterized [e.g. Dehalococcoides (Dhc.) mccartyi, Desul-
fitobacterium (Dsb.) hafniense, and Sulfurospirillum multivorans; Goris
et al. 2015, Futagami and Furukawa 2016, Goris and Diekert 2016,
Zinder 2016; also see Table S1 (Supporting Information)], informa-
tion on temperature effects on dehalogenation potential as well as
growth conditions seems to be unavailable for a significant num-
ber of the strains (Table S1, Supporting Information). Overall, not

much has been described for the specific temperature-related lim-
itations towards dehalogenation, which would be an important
aspect for bioremediation purposes, and for assembling dehalo-
genating consortia for bioaugmentation applications.

According to our current knowledge, OHRB are distributed
across several phyla: Chloroflexota, Bacillota, Thermodesulfobac-
teriota, and Campylobacterota. Amongst these, most OHRB capa-
ble of dechlorinating CE that have been isolated so far belong to
the two genera: Dehalococcoides (phylum: Chloroflexota), where at
least 20 strains have been reported affiliated with Dhc. mccartyi (Ta-
ble S1, Supporting Information); Desulfitobacterium (phylum: Bacil-
lota) with at least seven strains reported for Dsb. hafniense. These
genera are amongst others described in the following Phylum sub-
sections, with a focus on those capable of organohalide respiration
using CE as electron acceptors.

Chloroflexota: within the phylum Chloroflexota, at least three
genera with dehalogenating activity have been described: Dehalo-
genimonas and Dehalococcoides and Dehalobium. So far, only one iso-
late has been reported for the genus ‘Dehalobium’, assigned De-
halobium chlorocoercia strain DF-1 (May and Sowers 2016, Oren and
Garrity 2022). In addition to its ability to selectively dechlorinate
certain chlorinated polychlorobiphenyls (PCBs) and highly chlo-
rinated benzenes, D. chlorocoercia strain DF-1 can also dechlori-
nate PCE and TCE to yield, albeit incompletely, higher amounts of
trans-DCE than cis-DCE, when supplemented with H2 or formate
as an electron donor (Miller et al. 2005, May et al. 2008). Dehalo-
bium chlorocoercia strain DF-1 grows optimally at 30–33◦C, while
no growth was reported at 10◦C or 35◦C (Wu et al. 2000, 2002a, b,
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Figure 2. Overview of the temperature activity range for a select group of CE-dechlorinating bacteria and the range of temperature for some examples
of abiotic dechlorination processes of the CE (1) Kengen et al. (1999), (2) Schaefer et al. (2017), and (3) Costanza and Pennell (2007) and Truex et al.
(2007). References for the temperature range of microorganisms can be found in Table 1 and Table S1 (Supporting Information).

Miller et al. 2005, Kittelmann and Friedrich 2008, May et al. 2008).
Within the genus Dehalogenimonas (Dhgm.), the two well described
species, Dhgm. lykanthroporepellens and Dhgm. alkenigignens were
only capable of dehalogenating a variety of organohalides such
as 1,2-dichloroethane and 1,1,2-trichloroethane but not any of the
CE (Moe et al. 2009, Yan et al. 2009, Bowman et al. 2013). However,
at least two strains have since been reported: ‘Candidatus Dehalo-
genimonas etheniformans’ and Dehalogenimonas sp. strain WBC-2,
which could dechlorinate one the CE (Table S1, Supporting Infor-
mation). ‘Candidatus Dehalogenimonas etheniformans’ strain GP,
which dechlorinates TCE, DCE, and VC grows between 20 and 30◦C
with hydrogen (Yang et al. 2017b). Dehalogenimonas sp. strain WBC-
2, which was enriched from the West Branch Canal Creek (WBC-2)
culture dechlorinates mainly trans-DCE to VC at room tempera-
ture (Jones et al. 2006, Manchester et al. 2012, Molenda et al. 2016).

Most bacterial isolates within the phylum Chloroflexota ca-
pable of organohalide respiration belong to the genus Dehalococ-
coides (Table S1, Supporting Information). Many Dhc. strains can
dechlorinate CE, some of them completely to ethene. Dehalococ-
coides mccartyi strain 195T (formerly known as Dhc. ethenogenes) is
the type strain for this genus (Maymo-Gatell et al. 1997, McMur-
die et al. 2009, Löffler et al. 2013), dechlorinate PCE and TCE to
VC, and cometabolically to ethene, with hydrogen as the electron
donor (Maymo-Gatell et al. 1997, 1999, Yan et al. 2021). In gen-
eral, Dhc. mccartyi strains are grown under mesophilic conditions
with most strains cultivable between 15 and 35◦C (Fig. 2; Maymo-
Gatell et al. 1997, Rosner et al. 1997, He et al. 2003, Muller et al.
2004, Sung et al. 2006a, Cheng and He 2009, Löffler et al. 2013,
Adrian and Löffler 2016). Dhc. mccartyi strain 195T has an optimum
growth temperature of 35◦C, while above this dechlorination ac-
tivity only persisted temporarily, and no dechlorination occurred
at 40◦C (Maymo-Gatell et al. 1997, McMurdie et al. 2009, Löffler et

al. 2013); strains CBDB1, BAV1, VS, FL2, and GT grow at optimum
temperatures between 25 and 30◦C (Adrian et al. 1998, 2000, He
et al. 2003, Sung et al. 2006a, Löffler et al. 2013, Adrian and Löffler
2016). Other strains such as MB, ANAS1, ANAS2, 11a, and DCMB5
possess optimum temperatures of 30◦C (Richardson et al. 2002,
Cheng and He 2009, Lee et al. 2011, Low et al. 2015).

Bacillota: CE dehalogenating species of this phylum belong to
the genera Dehalobacter (Dhb.), Desulfitobacterium (Dsb.), Sporomusa,
and Acetobacterium (Table S1, Supporting Information). A total of
two strains of Dhb. restrictus, strain PER-K23T and strain TEA, are
non spore-forming and have optimum growth temperatures of
about 30◦C (PER-K23: 25–30◦C with no growth above 35◦C; Holliger
et al. 1993, 1998, Wild et al. 1996, Nelson et al. 2014). Meanwhile,
several strains have been described within the genus Dehalobacter,
such as strains 12DCB1, 13DCB1, and TCP1 (Table S1, Supporting
Information). All Dhb. strains reported here have growth temper-
atures of 25–30◦C (Holliger et al. 1993, 1998, Yoshida et al. 2009,
Nelson et al. 2011, 2014, Wang et al. 2014a). Strains belonging to
the genus Desulfitobacterium (Dsb.) are facultative OHRB, which en-
able them to use a wide spectrum of electron donors and accep-
tors. Within this genus, several strains are capable of dechlorinat-
ing at least one of the CE, comprising the species Dsb. hafniense,
Dsb. dehalogenans, and Dsb. metallireducens including several which
are categorized under Dsb. spp. (Table S1, Supporting Informa-
tion). Dsb. hafniense strains DCB-2 (the type strain; Madsen and
Licht 1992, Christiansen and Ahring 1996) and TCP-A can dechlo-
rinate mainly PCE but not TCE (Breitenstein et al. 2001), while
strains TCE-1 and PCE-S can utilize both PCE and TCE (Miller et
al. 1997, Gerritse et al. 1999, Milliken et al. 2004, Ye et al. 2010,
Goris et al. 2015). Temperature range of growth is between 13 and
45◦C, varying between strains (Table S1, Supporting Information).
Dsb. hafniense DCB-2T was cultivated at 37◦C (Madsen and Licht
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1992, Christiansen and Ahring 1996), while Dsb. dehalogenans PCE-
1 grows between 19 and 42◦C (optimum: 34–37◦C). Dsb. metallire-
ducens strain 853-15AT grows between 20 and 37◦C, and no growth
was observed at 4, 15, or 50◦C (Finneran et al. 2002). Some strains
can form spores, suggesting their capability to survive at higher
temperatures, such as Dsb. hafniense strains DCB-2T and PCE-S,
and Dsb. sp. strain B31e3 are spore-forming (Madsen and Licht
1992, Christiansen and Ahring 1996, Löffler et al. 1996, Sanford et
al. 1996, Kunapuli et al. 2010), while others such as Dsb. hafniense
strain JH1, Dsb. dehalogenans strain JW/IU-DC1T, and Dsb. metallire-
ducens strain 853-15AT are not spore-forming (Utkin et al. 1994,
Finneran et al. 2002).

Thermodesulfobacteriota: to date, two several bacterial gen-
era within this phylum were capable of reductive dehalogenation:
Desulfuromonas and Geobacter. The genus Desulfuromonas (Dsm.)
comprises two species with dehalogenating capabilities namely
Dsm. chloroethenica and Dsm. michiganensis. Dsm. chloroethenica
strain TT4B utilizes PCE and TCE as electron acceptors in the pres-
ence of the electron donors acetate or pyruvate, to yield cis-DCE
(Krumholz et al. 1996, Krumholz 1997, Sung et al. 2003). This non
spore-forming strain has a growth range of 21–31◦C (optimum:
30◦C) and did not dechlorinate at 16 or 35◦C (Krumholz et al. 1996,
Krumholz, 1997). Dsm. michiganensis strains BB1 and BRS1 are ca-
pable of dechlorinating PCE and TCE as electron acceptors (Sung
et al. 2003), with a growth range between 10 and 35◦C and an opti-
mum growth temperature of 25◦C (Table S1, Supporting Informa-
tion). The second genus, Geobacter includes several Geobacter lov-
leyi strains (SZ, KB-1, and LYY), which can utilize PCE and/or TCE
as electron acceptor, with cis-DCE as a major end product (Table
S1, Supporting Information). Geobacter lovleyi strain SZ, the type
strain, grows between 10 and 40◦C (optimum: 35◦C), does not form
spores, and uses pyruvate, acetate, or hydrogen as electron donors
(Sung et al. 2006b, Wagner et al. 2012), while G. lovleyi strains KB-
1 and LYY grow at 22–25◦C and 30◦C, respectively (Duhamel and
Edwards 2006, Lihl et al. 2019, Liang et al. 2021).

Campylobacterota: Sulfurospirillum (formerly Dehalospirillum) is
the only known dehalogenating genus within this phylum com-
prising mainly S. multivorans and S. halorespirans (Table S1, Sup-
porting Information). A number of these strains are mesophilic,
growing between 20 and 30◦C (Table 1; Table S1, Supporting In-
formation) and are capable of metabolically dechlorinating PCE
or TCE to cis-DCE (e.g. S. multivorans strain K, S. halorespirans strain
PCE-M2, and Sulfurospirillum. sp. strain JPD-1; Laanbroek et al. 1977,
Scholz-Muramatsu et al. 1995, Campbell et al. 2001, Pietari 2002,
Luijten 2003). Spore formation was not described. One of the best
described species, S. multivorans (formerly Dehalospirillum multivo-
rans strain K), is able to dechlorinate PCE and TCE to cis-DCE, with
electron donors such as hydrogen, formate, or pyruvate, grows be-
tween 15 and 33◦C but optimally at 28–30◦C and does not grow
above 37◦C (Scholz-Muramatsu et al. 1995). There are also several
strains within the Sulfurospirillum sp. (strains JPD-1, ACS TCE, and
ACEDCE) and S. carboxydovorans (strain MV) with optimal growth
temperatures within the mesophilic growth range (∼21–30◦C; Ta-
ble S1, Supporting Information; Laanbroek et al. 1977, Campbell
et al. 2001, Pietari 2002, Jensen and Finster 2005, Yang et al. 2017a,
Huo et al. 2020).

Reductive dehalogenation at thermophilic
conditions
Overall, there is a lack of reports describing reductive dehalo-
genation processes by microbial isolates at thermophilic condi-

tions (above 45◦C; Table S1, Supporting Information), suggesting
that higher temperatures may hamper reductive dehalogenation.
However, it should be noted that enrichment and isolation of de-
halogenating bacteria has generally been done at 20–30◦C, thus
resulting in isolates adapted to these temperatures. To our knowl-
edge, there are no reports about enrichment of thermophilic de-
halogenating microbes from natural hot habitats such as volcanic
areas, hot springs, oil reservoirs, or deep aquifers. It is possible that
since these habitats do not contain halogenated organics in higher
concentrations, and were hence not the main focus in investiga-
tions. Nevertheless, it is an open question whether these hot nat-
ural habitats are inhabited by thermophilic dehalogenating mi-
croorganisms. Notably, the solubility of CE is slightly decreasing
from 20 to 40◦C, but again increasing at temperatures above 40◦C
(Koproch et al. 2019), hence reductive dehalogenation reactions
should not be limited by physical–chemical constraints at higher
temperatures.

Kengen et al. (1999) describe a thermophilic anaerobic en-
richment culture from PCE-polluted sediment from Rotterdam
harbour containing relatives of Dhb. restrictus and Desulfotomacu-
lum thermosapovorans, capable of dechlorinating PCE to cis-DCE at
65◦C (Table 1), indicating that microbial reductive dehalogenation,
which was likely attributed to Dhb. restrictus, is principally feasible
at thermophilic conditions. Therefore, more studies are needed to
be done at higher temperatures to better understand the limits at
which microbial growth and dechlorinating ability can persist, as
well as remain resilient during a temporary period of high tem-
perature exposure.

Nevertheless, strains possessing a temperature range of ≥ 25◦C
for growth are probably more tolerant to environmental temper-
ature fluctuations, e.g. G. lovleyi strain SZ (10–40◦C), Dsb. frappieri
strain PCP-1 (15–45◦C), and Dsb. hafniense strain PCE-S, which has
a growth range between 20 and 45◦C (optimal: 37–38◦C) respec-
tively (Table S1, Supporting Information). At contaminated sites
exposed to elevated temperatures, a succession of microbial com-
munities may result in a dominance of spore formers; however,
this is expected to lead to partial dechlorination to DCE (Keynan
et al. 1964, Berg and Sandine 1970, O’Sullivan et al. 2015). Spores
which are usually resistant to high (boiling) temperatures con-
fer the members of this respective community with the ability to
reestablish themselves post heat exposure (O’Sullivan et al. 2015,
Chan et al. 2021). For example, the growth and activity of the
spore-forming Dsb. chlororespirans strain Co23 recovered 1 week
post incubation at 80◦C, after being returned to 30◦C (Sanford et
al. 1996).

Effect of temperature on microbial reductive
dehalogenation by microbial communities
at laboratory and field conditions
The effect of temperature shifts on microbial dehalogenation has
been investigated mainly in the context of thermal treatment of
contaminated field sites, as well as, more recently, with the combi-
nation of ATES and bioremediation in mind (Table S2, Supporting
Information). However, only few studies have been published sys-
tematically investigating the effect of temperature.

Over the years, several consortia have been established includ-
ing BDI, OW, KB-1, WBC-2, and SDC-9 (Table S2, Supporting In-
formation). Consortium BDI comprises Dhc. mccartyi strains BAV1,
FL2, and GT with a cultivation temperature of 24◦C; ethene was
produced at 30◦C, but VC accumulated at 35 and 40◦C, however,
cultivation at 45◦C resulted in a loss of dechlorination activity

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/98/9/fiac081/6638985 by guest on 23 M
arch 2024



Bin Hudari et al. | 7

(Fletcher et al. 2011a). Consortium OW was cultivated at 30◦C and
consists of multiple Dehalococcoides strains as well as Dehalobacter,
Geobacter, and Sulfurospirillum (Fletcher et al. 2011b). Similar to BDI,
dechlorination activity was lost at 45◦C while VC accumulated at
35 or 40◦C (Fletcher et al. 2011a). Consortium KB-1, which consists
of Dehalococcoides and phylotypes affiliated to the genus Geobac-
ter, was cultivated at room temperature and completely dechlori-
nated TCE between 10 and 30◦C, but it accumulated cis-DCE out-
side the mentioned temperature range; no dechlorination activ-
ity was observed at 50 and 60◦C (Friis et al. 2007b). Consortium
SDC-9, which comprised Dehalocococcoides and Desulfitobacterium as
the two most abundant genera, were cultivated between 21 and
30◦C, but have been reported to dechlorinate at 5◦C and up to 40◦C
(Vainberg et al. 2009, Vainberg and Steffan 2014, Kucharzyk et al.
2020). Consortia WBC-2 and DehaloR 2 were cultivated at 19◦C and
30◦C, respectively, however, no further range of temperatures were
described (Table S2, Supporting Information; Jones et al. 2006, Lee
and Lee 2016).

The lowest temperature at which reductive dehalogenation of
TCE to DCE and VC was reported is 4◦C, proven by formation
of [14C]-VC and [14C]-cis-DCE from [14C]-TCE, in microcosms pre-
pared with contaminated sediments from Alaska (Bradley et al.
2005). Incubations with consortium KB-1 below 10 or 15◦C, with
lactate or propionate as electron donor, respectively, in batch cul-
ture, or at 15◦C in a column system, accumulated cis-DCE, suggest-
ing comparatively lower activity of Dhc. mccartyi at lower temper-
ature (Friis et al. 2007b, Marcet et al. 2018b). However, it should be
noted that these experiments were done with consortium KB-1,
which was continuously cultivated at room temperature, prob-
ably leading to a loss of slow-growing reductive dechlorinators
adapted to lower temperatures in the original inoculum. Mean-
while, in other studies with consortium KB-1, complete reductive
dechlorination to ethene was observed in laboratory studies at
temperatures as low as 4◦C with lactate (Heimann et al. 2007) and
up to 43◦C in KB-1 bioaugmented column experiments (Marcet
et al. 2018a; Table S2, Supporting Information). In these studies,
an increase in temperature resulted in a complete dechlorina-
tion to ethene. Contrastingly, a laboratory study by Nagymate et
al. (2020) observed dehalogenation of TCE to ethene with corre-
sponding presence of Dhc. mccartyi at 8◦C (Nagymate et al. 2020),
stressing the importance of the temperature used for cultivation,
especially in the case of bioaugmentation.

However, it is important to note that the upper limits differ for
different systems, could instead hamper complete dechlorination
past cis-DCE. For example, the upper limits for the dechlorina-
tion of PCE to ethene was 43◦C in a column system (Marcet et al.
2018b), while in another study batch cultures with the same KB-1
consortium an upper limit of 30◦C was reported (Friis et al. 2007b,
Heimann et al. 2007). The highest currently reported temperature
for dechlorination of PCE to cis-DCE is 65◦C, by a thermophilic
anaerobic enrichment culture containing relatives of Dehalobac-
ter restrictus and Desulfotomaculum thermosapovorans (Kengen et al.
1999; Table S2, Supporting Information).

With that, it seems that complete dechlorination to ethene
is more temperature sensitive when compared to incomplete
dechlorination. However, there are many studies that do not pro-
vide information on temperature ranges and/or its effects on re-
ductive dechlorination (Table S2, Supporting Information). Re-
gardless, temperature ranges reported in the laboratory studies do
not necessarily reflect the potential temperature range for dechlo-
rination present in natural systems, since the diversity of dechlo-
rinators are likely to be broader than currently known. The di-
versity in the temperature optima and ranges of the consortium

members enable the consortium to adjust to the temperature
whilst performing their dechlorination function especially during
bioaugmentation. This may be useful in the event where different
members of the consortium (each with different growth temper-
ature ranges and optima), which are either involved in different
steps of the reductive dechlorination, or contribute indirectly ei-
ther via fermentation of substrates to supply carbon source and
electron donor, can carry out the steps when temperatures are
non-inhibitory.

A majority of the enrichment cultures were cultivated under
mesophilic growth conditions such as KB-1 (room temperature)
and OW (30◦C; Friis et al. 2007b, Fletcher et al. 2011a; Table S2,
Supporting Information). However, temperature-influenced loss
of dechlorination activity could cause the accumulation of the
toxic cis-DCE and VC outside the optimal temperature window
(Fletcher et al. 2011b).

In a study done by our lab, which investigated dechlorination
of TCE in CE-contaminated sediment in the temperature range
between 10 and 60◦C, a higher accumulation of VC at 30◦C and
cis-DCE at 40◦C was observed when compared to replicates in-
cubated at 10◦C and 20◦C where the major product was ethene
(unpublished). In general these results fit with published results,
the dechlorination to ethene occurred in the presence of Dehalo-
coccoidia related phylotypes in experiments between 10 and 30◦C,
while this was absent at 40◦C (Ni et al. 2015, Zhang et al. 2015,
Yamazaki et al. 2020).

To our knowledge, at least two studies of tests directly at field
sites have been published. A field pilot test in the Czech Repub-
lic was performed in which the groundwater at the contaminated
field site was heated from the original temperature of 12–13◦C
to 35–40◦C and amended with whey as electron donor (Nemecek
et al. 2018). Ethene and methane were observed as products af-
ter heating and a rapid increase of the number of organohalide-
respiring genera (Dehalococcoides and Dehalobacter) and reductive
dehalogenase genes (vcrA and bvcA) was observed. Another study
tested high temperature heating of groundwater from 10 up to
70◦C at the Fort Lewis field site (Truex et al. 2007). While at lower
temperatures cis-DCE was observed as a product from presumably
biological dehalogenation, ethene, and acetylene were observed at
higher temperatures, likely a result from abiotic dehalogenation
catalysed by the reduced iron in the sediments.

Nevertheless, several studies have also discussed the role of the
microbial community following a period of more drastic temper-
ature fluctuations from thermal treatments, e.g. electrical resis-
tance heating (> 100◦C) and steam injection (between 100 and
120◦C; Friis 2006a, Friis et al. 2006). Friis et al. (2006) also men-
tioned the role of the temperature following thermal treatment in
predicting the biological remediation potential since this temper-
ature can either promote or inhibit dechlorination activity (Friis
2006b). For example, in the Danish site where steam injection
was applied followed by cooling, temperatures of 30–50◦C were re-
ported 1.5 months after completion (Friis 2006b, Friis et al. 2007a),
whereas a longer duration was needed in the Fort Lewis site (>
100 d) before temperatures below 50◦C were measured. Thus,
these prolonged cooling times would require long periods before
temperatures allow for growth of native or bioaugmented mi-
crobial communities and recovery of dechlorination activity. An-
other field study involved an analysis of a post-remediated PCE-
contaminated site in Rødekro, southern Denmark, which under-
went thermal remediation via steam injection in 2006. In their
study, conducted 11 years after remediation, samples were ob-
tained from wells drilled along the plume flowline to investigate
parameters such as redox potential, CE concentrations, and iso-
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topic compositions as well as qPCR for quantification of specific
organohalide-respiring genera and reductive dehalogenase genes
and microbial community analysis (Murray et al. 2019). Murray
et al. (2019) observed the recovery of microbial PCE and cis-DCE
dechlorination in the previously thermally remediated section of
the field site, stimulated by the release of dissolved organic car-
bon (DOC) during steam injection. However, the investigations did
not specifically ascertain if the recovery of dehalogenation activity
was related to a microbial community surviving heat treatment or
an inoculation from by-passing groundwater, which did not expe-
rience thermal remediation. The lack of information on the site’s
recovery potential following heat treatment further highlights the
uncertainty towards the resumption of biotransformation activity
in ATES-related heat storage cycles. Future studies should, there-
fore, elucidate the potential of recolonization from surrounding
groundwater, regrowth of microbial communities surviving heat
treatment, or the need for bioaugmentation for resumption of de-
halogenation activity.

Effect of temperature on expression and
activity of reductive dehalogenases
Temperature is a critical variable that affects enzyme stability
and activity where this usually increases with increasing temper-
ature before reaching an optimum followed by a decline in activity
(Mohr and Krawiec 1980, Arcus et al. 2016). Typically the optimum
temperature and thermal stability of enzymes is higher in ther-
mophiles followed by mesophiles and psychrophiles, which is re-
lated to the corresponding ‘lifestyles’. In the context of this review,
the temperature behaviors of dehalogenating enzymes are of spe-
cial interest. To date, several reductive dehalogenases (RDases) are
described for organohalide respiration via carbon–chlorine bond
cleavage (Fig. 1). PceA dechlorinates PCE and/or TCE to cis-DCE
(Neumann et al. 1996). PCE reductive dehalogenase PteA was more
recently classified in Dhc. mccartyi strain 11a5 and is believed to
dechlorinate PCE to TCE (Jugder et al. 2016, Zhao et al. 2017, Franke
et al. 2020). TCE reductive dehalogenase (TceA) dechlorinates TCE
to VC via the intermediate cis-DCE (Major et al. 2002) and from
VC to ethene (Magnuson et al. 1998, 2000, Yan et al. 2021). VC re-
ductive dehalogenase (VcrA) is capable of dechlorinating TCE, cis-
DCE, and VC to ethene while the BvcA dechlorinates VC to ethene.
In addition, a new VC reductive dehalogenase, cerA, has also
been reported which can dechlorinate TCE to ethene (Yang et al.
2017b).

A few of the purified CE reductive dehalogenases were charac-
terized for their temperature optimum. Interestingly, higher tem-
perature optima for the enzymes are reported when compared to
the growth temperature optima of the respective microorganisms,
e.g. PceA of S. multivorans, with growth optimum at 25–30◦C, has its
optimum at 42◦C, and becomes thermolabile at 50◦C (Neumann et
al. 1996, Turkowsky et al. 2019). Similarly, the PceA from Desulfito-
bacterium sp. strain PCE-S has its optimum at 50◦C, while the strain
is optimally cultivated at 37–38◦C (Miller, 1998).

A dependence of tceA expression on temperature in the ANAS
enrichment culture was observed, with a 4-fold and 50-fold lower
level of tceA expression (tceA transcripts per tceA gene) follow-
ing 20 h of incubation at 22◦C and 14◦C, respectively, versus in-
cubation at 30◦C, while the quantity of tceA gene (normalized
per ml) remained the same (Johnson et al. 2005). However, up-
regulation of expression does not necessarily equate to dechlo-
rination activity. For example, Fletcher et al. (2011b) showed that
although vcrA gene transcript abundances at 35 and 40◦C were

one order of magnitude higher compared to at 30◦C, dechlorina-
tion still stalled at VC at the higher temperatures while complete
dechlorination to ethene was observed at 30◦C. Their study sug-
gests that higher gene expression does not correlate with dechlo-
rination activity, but instead a stress response to heat (Fletcher et
al. 2011b). Nonetheless, while VC dechlorination activity of cul-
ture BDI was lost at 45◦C, VC dechlorination activity recovered
upon returning to 24◦C following incubation at 40◦C for 24 d,
but incubations at 40◦C for longer periods resulted in the loss
of dechlorination activity (Fletcher et al. 2011b). These findings
exemplify how a small temperature shift can impact bacterial
growth, inducing a stress response or affecting dechlorination
activity.

Indirect effects of temperature on
biotransformation: competing/synergetic
microbial processes
Temperature can influence synergistic or competing microbial
processes either by supporting, enhancing, limiting, or inhibit-
ing dehalogenation processes or its kinetics (Fig. 3). These include
production of hydrogen as electron donor and acetate as carbon
source for OHRB, respectively, during fermentation, competition
with the activity of methanogens and sulfate-reducing bacteria
for electron donors and carbon sources, and production of cofac-
tors (corrinoids) essential for functionality of the RDases. Gen-
erally, these processes have been reported at high temperatures
(Fukui et al. 1964, Kallmeyer and Boetius 2004, Gieg et al. 2010,
Verhaart et al. 2010, Piceno et al. 2014, Straub et al. 2018), how-
ever, thermophilic or thermotolerant microbial representatives
may be absent in shallow aquifers. Additionally, high tempera-
tures may result in mobilization of DOC as well as volatile con-
taminants (Griebler et al. 2016, Koproch et al. 2019). The increase
in volatile organic compounds (VOC) concentration by mobiliza-
tion from sediments may favour the faster conversion of PCE to
cis-DCE due to better bioavailability (Ni et al. 2016); conversely,
high concentrations of VOC such as PCE and TCE can be toxic
to OHRB or other bacteria which support dechlorination (such
as fermenters; Yang and McCarty, 2000, Huang and Becker 2011,
Yoshikawa and Zhang 2020).

To our knowledge, studies which correlate temperature or tem-
perature changes to effects which indirectly influence dechlorina-
tion are available but limited. Nonetheless, these will be described
in the following subsections below.

Fermentation and production of electron donors and carbon
sources for OHRB: fermentation of complex substrates, with pro-
duction of hydrogen and acetate, by hyperthermophile and ex-
tremely thermophilic archaea and bacteria has been described
and studied [for a review see Verhaart et al. (2010)]. Heimann et
al. (2007) determined fermentation rates of lactate and pyruvate
(as fast and slow hydrogen-releasing sources, respectively) at dif-
ferent temperatures to support anaerobic microbial dechlorina-
tion of TCE by the KB-1 consortium. Hydrogen production was ob-
served between 4 and 40◦C and the overall higher dechlorination
rates of TCE to ethene could be related to the higher rates of hy-
drogen supply. Besides being a product of fermentation, acetate
was suggested to be produced by hydrogenotrophic homoace-
togenesis in lactate-amended cultures at temperatures between
4 and 30◦C. No lactate fermentation was observed at tempera-
tures above 40◦C (Heimann et al. 2007). Thus, temperatures of up
to 40◦C generally may not hamper production of suitable elec-
tron donors and carbon sources for dehalogenation, however, it is
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Figure 3. Summary of catabolic interactions and temperature-related bottlenecks indirectly affecting the processes; modified from Richardson (2016).
(1) Friis et al. 2005, Tabuchi et al. (2010), Jesußek et al. (2013), Saito et al. (2016), and Bertolet et al. (2018), (2) Verhaart et al. (2010), (3) Conrad and
Wetter (1990), Miyajima et al. (1997), Nozhevnikova et al. (2007), Tabuchi et al. (2010), Bin Hudari et al. (2020), and Metze et al. (2021), (4) Straub et al.
(2018), (5) Fukui et al. (1964) and Fang et al. (2018), (6) Adrian and Löffler (2016), (7) Neumann et al. (1996) and Turkowsky et al. (2019), (8) Ni et al. (2016),
and (9) Fletcher et al. (2011a, b).

questionable how and if aquifer microbial communities can retain
the ability for dehalogenation at temperatures higher than 40◦C
and if shallow aquifers contain thermotolerant or thermophilic
strains naturally.

Competition by methanogenic archaea,
sulfate reducing, and iron reducing bacteria
Methanogens, sulfate reducing bacteria (SRB) and iron reducing
bacteria (IRB), which may compete with OHRB (specifically CE
dechlorinating bacteria) for hydrogen and acetate, have been re-
ported to be active at psychro-, meso-, and thermophilic condi-
tions, including extremely thermophilic archaeal representatives
active at temperatures above 70◦C [for reviews see e.g. Lovley et
al. (2004), Gieg et al. (2010), Straub et al. (2018), Zheng et al. (2019),
Lin et al. (2020)]. Nevertheless, several studies show how temper-
ature can enhance or impede rates for methanogenesis (Sansone
and Martens 1982, Schulz et al. 1997, Lettinga et al. 2001). Zhuang
and Pavlosthatis (1995) described that methanogenesis and TCE
dechlorination were both affected by temperature but methano-
genesis was more sensitive to temperature. However, both pro-
cesses showed similar temperature optima of ∼ 35◦C, with both
members competing for the same resource pool (e.g. electron
donor and carbon source; Zhuang and Pavlostathis 1995). In con-
trast, in a study by Fletcher et al. (2011a) involving thermal treat-
ment showed that temperatures > 5◦C impeded reductive dechlo-
rination, but instead a majority of the reducing equivalents were
utilized in methanogenesis, which was considered one of the pos-
sible cause for the incomplete dechlorination.

As with all (bio)chemical reactions, sulfate reduction rates are
temperature dependent (Okabe and Characklis 1992, Elsgaard et
al. 1994, Meier et al. 2005, Bonte et al. 2013, Bin Hudari et al. 2020,
2022). To our knowledge, only one study simultaneously corre-

lated temperature and its effect on sulfate reduction and dechlo-
rination. Guerrero-Barajas et al. (2011) observed higher rates for
sulfate reduction and TCE biotransformation at 37◦C compared
to 70◦C, however, dechlorination was thought to be cometabolic
with sulfate/sulfur reduction and fermentation (Guerrero-Barajas
et al. 2011).

Meanwhile, the impact of biological Fe(III) reduction on reduc-
tive dehalogenation rates is less understood (Paul et al. 2015, Di
Curzio 2019, Murray et al. 2020), as well as any temperature ef-
fects on this relationship.

The role of temperature on cofactor
production
Reductive dechlorination undertaken by bacteria such as Dhc.
mccartyi strain 195, requires cobamides such as vitamin B12 for
growth and as cofactor in reductive dehalogenases (Maillard et
al. 2003, Butler and Kräutler 2006, He et al. 2007, Schipp et al.
2013, Fang et al. 2017). Reductive dehalogenation with vitamin
B12 (cyanocobalamin) can proceed abiotically or biotically, by
generating a cobalt(I) supernucleophile using a strong reduc-
tant or catalyzed corrinoid-dependent reductive dehalogenases,
respectively (Kim and Carraway 2002, He et al. 2007, Heckel et
al. 2018, Yan et al. 2018). OHRB are either capable of producing
cobamides de novo, either aerobically or anaerobically or use sal-
vage pathways such as Dehalococcoides, which relies on exogenous
cobamides (e.g. vitamin B12) in the growth medium (Schipp et al.
2013, Balabanova et al. 2021). Variations in the lower Coα base
of the cobamide can impact microbial reductive dechlorination
rates and growth of Dhc. mccartyi strains (Yan et al. 2018), result-
ing in varying rates or a complete loss of dechlorination activity as
well as substrate utilization (Yan et al. 2015). This can be crucial
for dechlorinators such as Dehalococcoides, which rely on exoge-
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nous cobamide, where the loss of cobamide resulting from ther-
mal treatment could instead result in utilization of less favourable
cobamides affecting the extent and rates of dechlorination. Be-
sides, higher concentrations of vitamin B12 have been described
to improve the growth of Dehalococcoides sp. (He et al. 2007, Fang et
al. 2017), and temperature can also promote growth of reductive
dehalogenase-dependent cobamide producers. One study men-
tioned thermophilic cobamide production (Fukui et al. 1964), how-
ever, to our knowledge, there is no information on the effects of
temperature on the cobamide producers supplying cofactors ben-
eficial to the OHRB.

Other effects of high temperature
Temperatures above 45◦C significantly mobilize dissolved organic
carbon (DOC) from aquifer sediments (Griebler et al. 2016), also
likely providing electron donors for reductive dehalogenation. For
example, Marcet et al. (2018b) incubated 14 different solid mate-
rials at temperatures 30, 60, and 90◦C, and reported an increase
in the release of direct electron donors (such as acetate and H2)
and fermentable volatile fatty acids (e.g. lactate and propionate),
highest at 90◦C followed by 60◦C when compared to 30◦C higher
temperatures. Friis et al. (2005) observed an increase of DOC in
the aqueous phase after heating contaminated aquifer material
up to 100◦C (Newmark and Aines 1995, Friis et al. 2005). Mar-
nette et al. (2010) attributed higher dechlorination activity to the
increased mobilization of VOC (i.e. increased desorption) avail-
able to the dechlorinators. Abiotic reductive CE dechlorination
can occur in parallel with biotic reductive dechlorination under
field conditions to yield acetylene as well as ethene (Dong et al.
2009). Schaefer et al. (2017) investigated abiotic reductive dechlo-
rination between 20 and 55◦C in three clayey aquifer materials,
an aquitard from PCE-impacted site in Puerto Rico, PCE-impacted
site in the USA, and a TCE-impacted clayey layer from New Hamp-
shire: acetylene and ethene generation followed the Arrhenius re-
lationship and was putatively attributed to a higher ferrous min-
eral content. Costanza and Pennell (2007) incubated PCE contami-
nated soil and groundwater at 25, 55, 75, and 95◦C. Aqueous phase
PCE concentrations increased with higher temperatures which is
attributed to PCE mass transfer from solid to aqueous phase. TCE
hydrogenolysis to cis-DCE occurred at higher rates at 95◦C com-
pared to 55◦C (Costanza and Pennell, 2007).

Potential for active combination of thermal
energy storage and bioremediation:
challenges
ATES becomes increasingly relevant in urban areas due to grow-
ing energy demands in combination with the transition to sus-
tainable, CO2 reduced energy systems (Fleuchaus et al. 2018). On
the other hand, chlorinated solvents are typically contaminants
of urban industrial and residential areas and since ATES appli-
cations results in water exchange between locations during input
and output the potential migration of toxic contaminants may be-
come problematic. Besides, one should also consider other effects
(e.g. chemical) on pipes in sulfidic groundwater such as pipe clog-
ging from iron sulfide precipitates (Li et al. 2017) or pipe corrosion
(Lerm et al. 2013). However, a combination of ATES with bioreme-
diation could allow a simultaneous contamination removal while
fulfilling heating and cooling demand and supply, killing two birds
with one stone. Clearly, integrating thermal treatment or thermal

energy storage with bioremediation requires an understanding of
microbial activity and adaptation to shifting temperatures.

Combinations with LT-ATES, with temperatures up to 25◦C,
would likely promote biotransformation as most described strains
and consortia used for bioremediation purposes are adapted to
these temperatures. Nevertheless, there are demands for storing
higher temperatures (HT-ATES) due to the higher energy density
per volume (Drijver et al. 2012). This is particularly interesting for
urban areas where heat management requires storage in smaller
volumes in the subsurface. HT-ATES systems in combination with
bioremediation would have several added challenges. One of the
probable scenarios following the use of high temperature either in
thermal treatment or HT-ATES is that these may leave the subsur-
face void of the native microbial community and/or the necessary
microorganisms that contribute towards contaminant biotrans-
formation (Griebler et al. 2016). As shown in Table 1 and Tables S1
and S2 (Supporting Information), most CE-dechlorinating bacteria
and consortia are cultivated in mesophilic conditions, while only a
limited number are capable of spore formation, allowing survival
under harsh conditions. While high temperature can induce the
release of DOC containing putative electron donors and carbon
sources for OHRB, and thereby stimulating microbial reductive de-
halogenation, these populations may not survive the high temper-
atures (> 50◦C) of the heating phase. Thus, natural inflow of native
reductive dechlorinators with the surrounding groundwater from
cooler regions or bioaugmentation with laboratory-grown reduc-
tive dechlorinating cultures may be necessary. Bioaugmentation,
ideally in combination with biostimulation, is a useful strategy
to restore dechlorinating ability at a contaminated site (Harkness
et al. 1999, Ellis et al. 2000, Lendvay et al. 2003, Friis et al. 2005,
2006, Morrill et al. 2005, Lookman et al. 2007, Fletcher et al. 2011a,
Ni et al. 2014). Bioaugmentation of heat-inactivated PCE/TCE con-
taminated sediments with the Dehalococcoides-containing, PCE to
ethene dechlorinating consortium OW resulted in dechlorination
of at least 85% of the PCE/TCE in a microcosm study, albeit to cis-
DCE, which was further dechlorinated to ethene after biostimula-
tion with hydrogen gas (Fletcher et al. 2011a). However, cyclic high
temperatures regimes may then similarly require a cyclic bioaug-
mentation regime.

Key open questions and conclusion
This review observed several gaps that would need to be ad-
dressed with respect to reductive dechlorination at higher tem-
peratures. The first gap pertains to the lack of information on
thermophilic or thermotolerant reductive dechlorinators native
to the subsurface. Thus far, a majority of isolates and enrich-
ment cultures capable of reductive dechlorination comprise of
mesophiles, derived from temperate zones and cultivated at com-
mon laboratory incubator temperatures (20–30◦C). There are ex-
ceptions though, such as the non-CE dechlorinating Dsb. chlorores-
pirans that grows between 15 and 37◦C (optimum: 37◦C); while no
growth was reported above 45◦C, residual activity was observed
to persist up to 55◦C, e.g. Sanford et al. (1996), observed dechlori-
nating activity in resting cells for up to 11 h when incubated at
50◦C (Löffler et al. 1996, Sanford et al. 1996). Therefore, in order to
diversify CE-dechlorinating bacteria (OHRB in general) to include
thermophiles, perhaps there should be a greater attempt to isolate
thermophiles, in addition to targeted enrichments for reductive
dechlorinators at naturally hot sites. While there have been ef-
forts to explore thermophilic reductive dechlorination, these have
yet to yield any cultures from such habitats. In addition, searches
for sequences of reductive dehalogenases from hot environment
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did not generate many outputs (if any). Second, there is a lack
of comprehensive information on some isolates and strains in
the presented studies, particularly with respect to the tempera-
ture range for growth, the electron donor/acceptor profile, as well
as whether they are capable of spore-spore formation (Table S1,
Supporting Information). Spore formation could be crucial for re-
sumption of dechlorination following a period of higher tempera-
tures, or is essential for putative thermophilic reductive dechlo-
rinators being inactive but alive at temperate or cold regions.
Third, for a successful combined heat storage/thermal treatment
and bioremediation approaches at contaminated sites, knowledge
seems to be lacking on the direct effects of temperature pertur-
bations on the microbial community, especially the dechlorina-
tion potential and recovery of dechlorination capacity. Fourth, un-
like the extensive studies done to characterize isolates and en-
richment cultures, much fewer studies pertaining to field site ap-
plications are available to our knowledge; perhaps, these studies
were not made public for commercial or legal reasons. The fifth
gap pertains to the very limited information available about the
indirect effects of temperature on dechlorination, e.g. effects on
syntrophic partner organisms or competitors of electron donors.
The role of temperature on DOC and associated release of electron
donors or toxicity from increased VOC mobilization for reductive
dechlorination should also be investigated in greater detail. The
penultimate gap, seems to be a lack of knowledge on the consor-
tia applied for dechlorination for bioaugmentation [for e.g. KB-1
see Table S2 (Supporting Information)], and whether they are re-
silient to temperature shifts. Lastly, based on our literature search
(Table S2, Supporting Information), very little information docu-
menting dechlorination potential in ATES is available, with only a
few studies related to thermal treatment.

In summary, there has been significant progress in the isola-
tion and characterization of OHRB, as well as consortia for the
purpose of bioremediation. This review highlights the gap when
bioremediation is coupled with thermal energy storage and the
need for resilient, active thermophilic OHRB sustaining biodegra-
dation reactions at high temperatures. However, it is also impor-
tant to note that other parameters can also directly and indirectly
affect dehalogenation. Above all, since bioremediation is also site-
specific and dependent on the type of contaminants and the na-
tive microbial community present, a comprehensive site survey is
firstly necessary prior to establishment of bioremediation coupled
to thermal energy storage.

Supplementary data
Supplementary data are available at FEMSEC online.
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